Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 20
Filter
Add more filters










Publication year range
1.
Bioengineered ; 14(1): 2252667, 2023 12.
Article in English | MEDLINE | ID: mdl-37661761

ABSTRACT

Disadvantages of using murine monoclonal antibodies (mAb) in human therapy, such as immunogenicity response, led to the development of technologies to transform murine antibodies into human antibodies. The murine anti-FGF2 3F12E7 mAb was proposed as a promising agent to treat metastatic melanoma tumors; once it blocks the FGF2, responsible for playing a role in tumor growth, angiogenesis, and metastasis. Considering the therapeutic potential of anti-FGF2 3F12E7 mAb and its limited use in humans due to its origin, we used this antibody as the template for a guided selection humanization technique to obtain human anti-FGF2 mAbs. Three Fab libraries (murine, hybrid, and human) were constructed for humanization. The libraries were phage-displayed, and the panning was performed against recombinant human FGF2 (rFGF2). The selected human variable light and heavy chains were cloned into AbVec vectors for full-length IgG expression into HEK293-F cells. Surface plasmon resonance analyses showed binding to rFGF2 of seven mAbs out of 20 expressed. Assays performed with these mAbs resulted in two that showed proliferation reduction and cell migration attenuation of HUVEC and SK-Mel-28 melanoma cells. In-silico analyses predicted that these two human anti-FGF2 mAbs interact with FGF2 at a similar patch of residues than the chimeric anti-FGF2 antibody, comprehending a region within the heparin-binding domains of FGF2, essential for its function. These results are comparable to those achieved by the murine anti-FGF2 3F12E7 mAb and showed success in the humanization process and selection of two human mAbs with the potential to inhibit undesirable FGF2 roles.


The guided selection humanization process enabled the production of 20 human mAbs anti-FGF2;Seven human anti-FGF2 mAbs showed binding to the rFGF2 antigen in the SPR binding assay;Two human anti-FGF2 mAbs inhibited the proliferation and migration of HUVEC and SK-Mel-28 cells and were predicted to contact the FGF2 at a similar patch of residues than the original mAb.


Subject(s)
Antibodies, Monoclonal , Melanoma , Humans , Animals , Mice , Hybridomas , HEK293 Cells , Cell Proliferation
2.
Viruses, v.15 n. 11, 2177, out. 2023
Article in English | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-5172

ABSTRACT

Antibody-based passive immunotherapy has been used effectively in the treatment and prophylaxis of infectious diseases. Outbreaks of emerging viral infections from arthropod-borne viruses (arboviruses) represent a global public health problem due to their rapid spread, urging measures and the treatment of infected individuals to combat them. Preparedness in advances in developing antivirals and relevant epidemiological studies protect us from damage and losses. Immunotherapy based on monoclonal antibodies (mAbs) has been shown to be very specific in combating infectious diseases and various other illnesses. Recent advances in mAb discovery techniques have allowed the development and approval of a wide number of therapeutic mAbs. This review focuses on the technological approaches available to select neutralizing mAbs for emerging arbovirus infections and the next-generation strategies to obtain highly effective and potent mAbs. The characteristics of mAbs developed as prophylactic and therapeutic antiviral agents for dengue, Zika, chikungunya, West Nile and tick-borne encephalitis virus are presented, as well as the protective effect demonstrated in animal model studies.

3.
Bioengineering, v. 14, n. 1, 2252667, set. 2023
Article in English | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-5095

ABSTRACT

Disadvantages of using murine monoclonal antibodies (mAb) in human therapy, such as immunogenicity response, led to the development of technologies to transform murine antibodies into human antibodies. The murine anti-FGF2 3F12E7 mAb was proposed as a promising agent to treat metastatic melanoma tumors; once it blocks the FGF2, responsible for playing a role in tumor growth, angiogenesis, and metastasis. Considering the therapeutic potential of anti-FGF2 3F12E7 mAb and its limited use in humans due to its origin, we used this antibody as the template for a guided selection humanization technique to obtain human anti-FGF2 mAbs. Three Fab libraries (murine, hybrid, and human) were constructed for humanization. The libraries were phage-displayed, and the panning was performed against recombinant human FGF2 (rFGF2). The selected human variable light and heavy chains were cloned into AbVec vectors for full-length IgG expression into HEK293-F cells. Surface plasmon resonance analyses showed binding to rFGF2 of seven mAbs out of 20 expressed. Assays performed with these mAbs resulted in two that showed proliferation reduction and cell migration attenuation of HUVEC and SK-Mel-28 melanoma cells. In-silico analyses predicted that these two human anti-FGF2 mAbs interact with FGF2 at a similar patch of residues than the chimeric anti-FGF2 antibody, comprehending a region within the heparin-binding domains of FGF2, essential for its function. These results are comparable to those achieved by the murine anti-FGF2 3F12E7 mAb and showed success in the humanization process and selection of two human mAbs with the potential to inhibit undesirable FGF2 roles.

4.
Toxins (Basel) ; 13(12)2021 12 03.
Article in English | MEDLINE | ID: mdl-34941703

ABSTRACT

Oral tolerance is defined as a specific suppression of cellular and humoral immune responses to a particular antigen through prior oral administration of an antigen. It has unique immunological importance since it is a natural and continuous event driven by external antigens. It is characterized by low levels of IgG in the serum of animals after immunization with the antigen. There is no report of induction of oral tolerance to Bothrops jararaca venom. Here, we induced oral tolerance to B. jararaca venom in BALB/c mice and evaluated the specific tolerance and cross-reactivity with the toxins of other Bothrops species after immunization with the snake venoms adsorbed to/encapsulated in nanostructured SBA-15 silica. Animals that received a high dose of B. jararaca venom (1.8 mg) orally responded by showing antibody titers similar to those of immunized animals. On the other hand, mice tolerized orally with three doses of 1 µg of B. jararaca venom showed low antibody titers. In animals that received a low dose of B. jararaca venom and were immunized with B. atrox or B. jararacussu venom, tolerance was null or only partial. Immunoblot analysis against the venom of different Bothrops species provided details about the main tolerogenic epitopes and clearly showed a difference compared to antiserum of immunized animals.


Subject(s)
Cross Reactions/immunology , Crotalid Venoms/immunology , Immune Tolerance , Administration, Oral , Animals , Antibodies/blood , Bothrops , Crotalid Venoms/administration & dosage , Female , Mice, Inbred BALB C , Nanostructures , Silicon Dioxide/chemistry , Species Specificity , Viper Venoms/immunology , Viperidae
5.
Immunol Res ; 66(3): 392-405, 2018 06.
Article in English | MEDLINE | ID: mdl-29855993

ABSTRACT

Tumor necrosis factor alpha (TNFα) is a pro-inflammatory cytokine that mediates the homeostasis of immune responses; its exacerbated production is associated with the pathogenesis of autoimmune and chronic inflammatory diseases. Anti-TNFα drugs have revolutionized the treatment of inflammatory conditions such as rheumatoid arthritis and Crohn's disease. Currently, a worldwide race is on stage for the production of biosimilars moved by patent expiration of monoclonal antibodies (mAbs), such as anti-TNFα adalimumab. Our goal was to develop the first stage of an adalimumab biosimilar candidate with potential for national production, through the generation of a productive and stable cell line and assess its functionality. The robotic system ClonePix was used for screening and isolation of colonies from transfected CHO-S stable pools plated in semisolid medium. Selected clones were expanded based on growth and productivity. Purified mAbs from different clones were tested for binding and functional activity. The binding affinity of the denominated adabut clones to TNFα and FcRγ did not differ statistically when compared to reference adalimumab. One functional activity assay demonstrated the antibody neutralization capacity of the cytotoxicity induced by TNFα in L929 murine fibroblasts. A second assay confirmed adabut as an antagonist of the TNFα activity by the inhibition of the cell adhesion molecule expression in HUVEC cultures. The binding and functional activity analyses performed with selected adabut clones in comparison to reference adalimumab represent an important status of "non-inferiority," part of the process required for a biosimilar development. We generated and selected high-quality adabut clones which mAbs may be further developed as the first in-house made Brazilian biosimilar, demonstrating a success case for our incipient biotechnology industry, or also modified as biobetters, thus representing an innovative strategy for the patients' welfare.


Subject(s)
Adalimumab/immunology , Antibodies, Monoclonal/immunology , Biosimilar Pharmaceuticals , Recombinant Fusion Proteins/immunology , Tumor Necrosis Factor-alpha/immunology , Adalimumab/genetics , Adalimumab/metabolism , Animals , Antibodies, Monoclonal/genetics , Antibodies, Monoclonal/metabolism , Antibodies, Neutralizing/immunology , Antibodies, Neutralizing/pharmacology , CHO Cells , Cell Line , Cell Survival/drug effects , Cell Survival/immunology , Cells, Cultured , Cricetinae , Cricetulus , Humans , Mice , Recombinant Fusion Proteins/metabolism , Recombinant Fusion Proteins/pharmacology , Tumor Necrosis Factor-alpha/genetics , Tumor Necrosis Factor-alpha/metabolism
6.
Braz. J. Pharm. Sci. ; 54(spe): e01007, 2018.
Article in English | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: but-ib15690

ABSTRACT

The use of serum containing polyclonal antibodies from animals immunized with toxins marked the beginning of the application of antibody-based therapy in late nineteenth century. Advances in basic research led to the development of the hybridoma technology in 1975. Eleven years later, the first therapeutic monoclonal antibody (mAb) was approved, and since then, driven by technological advances, the development of mAbs has played a prominent role in the pharmaceutical industry. In this review, we present the developments to circumvent problems of safety and efficacy arising from the murine origin of the first mAbs and generate structures more similar to human antibodies. As of October 2017, there are 61 mAbs and 11 Fc-fusion proteins in clinical use. An overview of all mAbs currently approved is provided, showing the development of sophisticated mAbs formats that were engineered based on the challenges posed by therapeutic indications, including antibody-drug conjugates (ADC) and glycoengineered mAbs. In the field of immunotherapy, the use of immunomodulators, bispecific mAbs and CAR-T cells are highlighted. As an example of promising therapy to treat infectious diseases, we discuss the generation of neutralizing monoclonal-oligoclonal antibodies obtained from human B cells. Scientific and technological advances represent mAbs successful translation to the clinic.

7.
Immunol. Res. ; 66(3): p. 392-405, 2018.
Article in English | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: but-ib15234

ABSTRACT

Tumor necrosis factor alpha (TNF alpha) is a pro-inflammatory cytokine that mediates the homeostasis of immune responses; its exacerbated production is associated with the pathogenesis of autoimmune and chronic inflammatory diseases. Anti-TNF alpha drugs have revolutionized the treatment of inflammatory conditions such as rheumatoid arthritis and Crohn's disease. Currently, a worldwide race is on stage for the production of biosimilars moved by patent expiration of monoclonal antibodies (mAbs), such as anti-TNF alpha adalimumab. Our goal was to develop the first stage of an adalimumab biosimilar candidate with potential for national production, through the generation of a productive and stable cell line and assess its functionality. The robotic system ClonePix was used for screening and isolation of colonies from transfected CHO-S stable pools plated in semisolid medium. Selected clones were expanded based on growth and productivity. Purified mAbs from different clones were tested for binding and functional activity. The binding affinity of the denominated adabut clones to TNF alpha and FcR gamma did not differ statistically when compared to reference adalimumab. One functional activity assay demonstrated the antibody neutralization capacity of the cytotoxicity induced by TNF alpha in L929 murine fibroblasts. A second assay confirmed adabut as an antagonist of the TNF alpha activity by the inhibition of the cell adhesion molecule expression in HUVEC cultures. The binding and functional activity analyses performed with selected adabut clones in comparison to reference adalimumab represent an important status of "non-inferiority," part of the process required for a biosimilar development. We generated and selected high-quality adabut clones which mAbs may be further developed as the first in-house made Brazilian biosimilar, demonstrating a success case for our incipient biotechnology industry, or also modified as biobetters, thus representing an innovative strategy for the patients' welfare.

8.
Braz J Pharm Sci, v. 54, n. spe , 2018
Article in English | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-2610

ABSTRACT

The use of serum containing polyclonal antibodies from animals immunized with toxins marked the beginning of the application of antibody-based therapy in late nineteenth century. Advances in basic research led to the development of the hybridoma technology in 1975. Eleven years later, the first therapeutic monoclonal antibody (mAb) was approved, and since then, driven by technological advances, the development of mAbs has played a prominent role in the pharmaceutical industry. In this review, we present the developments to circumvent problems of safety and efficacy arising from the murine origin of the first mAbs and generate structures more similar to human antibodies. As of October 2017, there are 61 mAbs and 11 Fc-fusion proteins in clinical use. An overview of all mAbs currently approved is provided, showing the development of sophisticated mAbs formats that were engineered based on the challenges posed by therapeutic indications, including antibody-drug conjugates (ADC) and glycoengineered mAbs. In the field of immunotherapy, the use of immunomodulators, bispecific mAbs and CAR-T cells are highlighted. As an example of promising therapy to treat infectious diseases, we discuss the generation of neutralizing monoclonal-oligoclonal antibodies obtained from human B cells. Scientific and technological advances represent mAbs successful translation to the clinic.

9.
Immunol Res, v. 66, n. 3, p. 392-405, jun. 2018
Article in English | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: bud-2496

ABSTRACT

Tumor necrosis factor alpha (TNF alpha) is a pro-inflammatory cytokine that mediates the homeostasis of immune responses; its exacerbated production is associated with the pathogenesis of autoimmune and chronic inflammatory diseases. Anti-TNF alpha drugs have revolutionized the treatment of inflammatory conditions such as rheumatoid arthritis and Crohn's disease. Currently, a worldwide race is on stage for the production of biosimilars moved by patent expiration of monoclonal antibodies (mAbs), such as anti-TNF alpha adalimumab. Our goal was to develop the first stage of an adalimumab biosimilar candidate with potential for national production, through the generation of a productive and stable cell line and assess its functionality. The robotic system ClonePix was used for screening and isolation of colonies from transfected CHO-S stable pools plated in semisolid medium. Selected clones were expanded based on growth and productivity. Purified mAbs from different clones were tested for binding and functional activity. The binding affinity of the denominated adabut clones to TNF alpha and FcR gamma did not differ statistically when compared to reference adalimumab. One functional activity assay demonstrated the antibody neutralization capacity of the cytotoxicity induced by TNF alpha in L929 murine fibroblasts. A second assay confirmed adabut as an antagonist of the TNF alpha activity by the inhibition of the cell adhesion molecule expression in HUVEC cultures. The binding and functional activity analyses performed with selected adabut clones in comparison to reference adalimumab represent an important status of "non-inferiority," part of the process required for a biosimilar development. We generated and selected high-quality adabut clones which mAbs may be further developed as the first in-house made Brazilian biosimilar, demonstrating a success case for our incipient biotechnology industry, or also modified as biobetters, thus representing an innovative strategy for the patients' welfare.

10.
Braz. J. Pharm. Sci. (Online) ; 54(spe): e01007, 2018. graf, ilus
Article in English | LILACS | ID: biblio-974431

ABSTRACT

The use of serum containing polyclonal antibodies from animals immunized with toxins marked the beginning of the application of antibody-based therapy in late nineteenth century. Advances in basic research led to the development of the hybridoma technology in 1975. Eleven years later, the first therapeutic monoclonal antibody (mAb) was approved, and since then, driven by technological advances, the development of mAbs has played a prominent role in the pharmaceutical industry. In this review, we present the developments to circumvent problems of safety and efficacy arising from the murine origin of the first mAbs and generate structures more similar to human antibodies. As of October 2017, there are 61 mAbs and 11 Fc-fusion proteins in clinical use. An overview of all mAbs currently approved is provided, showing the development of sophisticated mAbs formats that were engineered based on the challenges posed by therapeutic indications, including antibody-drug conjugates (ADC) and glycoengineered mAbs. In the field of immunotherapy, the use of immunomodulators, bispecific mAbs and CAR-T cells are highlighted. As an example of promising therapy to treat infectious diseases, we discuss the generation of neutralizing monoclonal-oligoclonal antibodies obtained from human B cells. Scientific and technological advances represent mAbs successful translation to the clinic


Subject(s)
Animals , Mice , Technological Development/classification , Antibodies , Antibodies, Monoclonal/analysis , Mice, Transgenic/classification , Immunotherapy/adverse effects
11.
Appl Microbiol Biotechnol ; 100(23): 10031-10041, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27678118

ABSTRACT

Genetic characterization of protein-producing clones represents additional value to cell line development. In the present study, ten Per.C6 clones producing a Rebmab100 monoclonal antibody were selected using two cloning methods: six clones originated from limiting dilution cloning and four by the automated colony picker ClonePix FL. A stability program was performed for 50 generations, including 4 batches distributed along the timeframe to determine specific productivity (Qp) maintenance. Four stable clones (two from limiting dilution and two from ClonePix FL) were further evaluated. The relative mRNA expression levels of both heavy chain (HC) and light chain (LC) genes were verified at generations 0, 30-35, and 50-55 of the stability program. At generations 0 and 30-35, LC gene expression level was higher than HC gene, whereas at generation 50-55, the opposite prevailed. A high correlation was observed between Qp and HC or LC mRNA expression level for all clones at each generation analyzed along the continuous culture. The mRNA stability study was performed at steady-state culture. The LC gene displayed a higher half-life and lower decay constant than HC gene, accounting for the higher observed expression level of LC mRNA in comparison to HC mRNA. Clone R6 was highlighted due its high Qp, mRNA expression levels, and mRNA stability. Besides the benefits of applying genetic characterization for the selection of stable and high-producing clones, the present study shows for the first time the correlation between Qp and HC or LC expression levels and also mRNA stability in clones derived from human cell line Per.C6(®).


Subject(s)
Antibodies, Monoclonal/metabolism , Genomic Instability , Immunologic Factors/metabolism , Recombinant Proteins/metabolism , Cell Line , Cloning, Molecular , Gene Expression Profiling , Humans , RNA, Messenger/analysis
12.
Appl. Microbiol. Biotechnol ; 100(23): p. 10031-10041, 2016.
Article | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: but-ib14127

ABSTRACT

Genetic characterization of proteinproducing clones represents additional value to cell line development. In the present study, ten Per.C6 clones producing a Rebmab100 monoclonal antibody were selected using two cloning methods: six clones originated from limiting dilution cloning and four by the automated colony picker ClonePix FL. A stability program was performed for 50 generations, including 4 batches distributed along the timeframe to determine specific productivity (Qp) maintenance. Four stable clones (two from limiting dilution and two from ClonePix FL) were further evaluated. The relative mRNA expression levels of both heavy chain (HC) and light chain (LC) genes were verified at generations 0, 3035, and 5055 of the stability program. At generations 0 and 3035, LC gene expression level was higher than HC gene, whereas at generation 5055, the opposite prevailed. A high correlation was observed between Qp and HC or LC mRNA expression level for all clones at each generation analyzed along the continuous culture. The mRNA stability study was performed at steadystate culture. The LC gene displayed a higher halflife and lower decay constant than HC gene, accounting for the higher observed expression level of LC mRNA in comparison to HC mRNA. Clone R6 was highlighted due its high Qp, mRNA expression levels, and mRNA stability. Besides the benefits of applying genetic characterization for the selection of stable and highproducing clones, the present study shows for the first time the correlation between Qp and HC or LC expression levels and also mRNA stability in clones derived from human cell line Per.C6(A (R))


Subject(s)
Cell Biology , Biotechnology , Genetics
13.
Biotechnol Prog ; 31(5): 1139-49, 2015.
Article in English | MEDLINE | ID: mdl-25708573

ABSTRACT

Many patents for the first biologicals derived from recombinant technology and, more recently, monoclonal antibodies (mAbs) are expiring. Naturally, biosimilars are becoming an increasingly important area of interest for the pharmaceutical industry worldwide, not only for emergent countries that need to import biologic products. This review shows the evolution of biosimilar development regarding regulatory, manufacturing bioprocess, comparability, and marketing. The regulatory landscape is evolving globally, whereas analytical structure and functional analyses provide the foundation of a biosimilar development program. The challenges to develop and demonstrate biosimilarity should overcome the inherent differences in the bioprocess manufacturing and physicochemical and biological characterization of a biosimilar compared to several lots of the reference product. The implementation of approaches, such as Quality by Design (QbD), will provide products with defined specifications in relation to quality, purity, safety, and efficacy that were not possible when the reference product was developed. Actually, the need to prove comparability to the reference product by the biosimilar industry has increased the knowledge about the product and the production-process associated by the use of powerful analytical tools. The technological challenges to make copies of biologic products while attending regulatory and market demands are expected to help innovation in the direction of attaining more productive manufacturing processes.


Subject(s)
Biosimilar Pharmaceuticals , Biotechnology/trends , Drug Industry/trends , Animals , Disease Models, Animal , Drug Industry/economics , Humans
14.
PLoS One ; 8(7): e70332, 2013.
Article in English | MEDLINE | ID: mdl-23936189

ABSTRACT

NaPi2b, a sodium-dependent phosphate transporter, is highly expressed in ovarian carcinomas and is recognized by the murine monoclonal antibody MX35. The antibody had shown excellent targeting to ovarian cancer in several early phase clinical trials but being murine the antibody's full therapeutic potential could not be explored. To overcome this impediment we developed a humanized antibody version named Rebmab200, expressed in human PER.C6® cells and cloned by limiting dilution. In order to select a clone with high therapeutic potential clones were characterized using a series of physicochemical assays, flow cytometry, real-time surface plasmon resonance, glycosylation analyses, immunohistochemistry, antibody-dependent cell-mediated cytotoxicity, complement-dependent-cytotoxicity assays and quantitative PCR. Comparative analyses of Rebmab200 and MX35 monoclonal antibodies demonstrated that the two antibodies had similar specificity for NaPi2b by flow cytometry with a panel of 30 cell lines and maintained similar kinetic parameters. Robust and high producer cell clones potentially suitable for use in manufacturing were obtained. Rebmab200 antibodies were assessed by immunohistochemistry using a large panel of tissues including human carcinomas of ovarian, lung, kidney and breast origin. An assessment of its binding towards 33 normal human organs was performed as well. Rebmab200 showed selected strong reactivity with the tested tumor types but little or no reactivity with the normal tissues tested confirming its potential for targeted therapeutics strategies. The remarkable cytotoxicity shown by Rebmab200 in OVCAR-3 cells is a significant addition to the traits of stability and productivity displayed by the top clones of Rebmab200. Antibody-dependent cell-mediated toxicity functionality was confirmed in repeated assays using cancer cell lines derived from ovary, kidney and lung as targets. To explore use of this antibody in clinical trials, GMP production of Rebmab200 has been initiated. As the next step of development, Phase I clinical trials are now planned for translation of Rebmab200 into the clinic.


Subject(s)
Antibodies, Monoclonal, Humanized/pharmacology , Antibody-Dependent Cell Cytotoxicity/drug effects , Neoplasms/drug therapy , Sodium-Phosphate Cotransporter Proteins, Type IIb/antagonists & inhibitors , Animals , Antibodies, Monoclonal/immunology , Antibodies, Monoclonal/pharmacology , Antibodies, Monoclonal, Humanized/genetics , Antibodies, Monoclonal, Humanized/immunology , Antibody Specificity/immunology , Antibody-Dependent Cell Cytotoxicity/immunology , Cell Line, Tumor , Cell Survival/drug effects , Cell Survival/immunology , Complement System Proteins/immunology , Female , Flow Cytometry , Humans , Immunohistochemistry , Kinetics , Mice , Neoplasms/immunology , Neoplasms/pathology , Ovarian Neoplasms/drug therapy , Ovarian Neoplasms/immunology , Ovarian Neoplasms/pathology , Protein Binding/immunology , Sodium-Phosphate Cotransporter Proteins, Type IIb/immunology , Surface Plasmon Resonance
15.
Mol Biotechnol ; 54(2): 269-77, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23359127

ABSTRACT

Digoxin is a pharmaceutical used in the control of cardiac dysfunction. Its therapeutic window is narrow, with effect dosage very close to the toxic dosage. To counteract the toxic effect, polyclonal Fab fragments are commercially available. Our study is based on a monoclonal anti-digoxin antibody, which would provide a product with a specific potency and more precise dosage for the detoxification of patients under digoxin treatment. Phage display technology was used to select variants with high affinity. From an anti-digoxin hybridoma, RNA was extracted for subsequent cDNA synthesis. Specific primers were used for the LC and Fd amplifications, then cloned sequentially in a phagemid vector (pComb3X) for the combinatorial Fab library construction. Clones were selected for their ability to bind to digoxin-BSA. The presence of light and heavy chains was checked, randomly selected clones then sequenced and induced to produce soluble Fabs, and subsequently analyzed for anti-digoxin expression. Out of ten clones randomly chosen, six resulted positive expression of the product. The sequencing of these revealed two identical clones and one presenting a pseudogene in the LC. Four clones presenting variations in the framework1 showed binding to digoxin-BSA by ELISA and western blotting. The specific binding was further confirmed by Biacore(®), which allowed ranking of the clones. The development of these clones allowed the selection of variants with higher affinity than the original version.


Subject(s)
Antibodies, Monoclonal/genetics , Cell Surface Display Techniques/methods , Digoxin/immunology , Immunoglobulin Fab Fragments/genetics , Immunoglobulin Fab Fragments/immunology , Antibodies, Monoclonal/immunology , DNA, Complementary/genetics , DNA, Complementary/immunology , Escherichia coli/genetics , Escherichia coli/immunology , Genetic Variation , Genetic Vectors/genetics , Genetic Vectors/immunology , Humans , Hybridomas/immunology , Immunoglobulin Heavy Chains/genetics , Immunoglobulin Heavy Chains/immunology , Immunoglobulin Light Chains/genetics , Immunoglobulin Light Chains/immunology , Peptide Library
17.
Mol Biotechnol ; 54(2): p.269-77, 2013.
Article in English | Sec. Est. Saúde SP, SESSP-IBPROD, Sec. Est. Saúde SP | ID: but-ib9729
19.
Article in English | MEDLINE | ID: mdl-12628223

ABSTRACT

Recombinant monoclonal antibodies specific for 11-dehydro-thromboxane B(2) (11D-TX) were isolated from the combinatorial libraries on a pComb3 phage-display vector using a magnetic cell sorting (MACS) system. The libraries were constructed from repertories of light and heavy-chains derived from the total RNA of 11D-TX conjugated keyhole limpet haemocyanin-immunized mice. Biotinylation of 11D-TX conjugated bovine serum albumin (BSA) was performed through free thiol groups on BSA using 1-biotinamido-4-[4'-(maleimidomethyl) cyclohexanecarboxamido] butane (Biotin-BMCC). Affinity bio-panning was performed to enrich the phage display libraries against biotinylated 11D-TX conjugated BSA with the MACS system. Results indicated that the selected anti-11D-TX Fab fragments expressed by E. coli exhibited a five-fold higher affinity for BSA conjugated 11D-TX compared to BSA alone and little specificity to other related compounds as determined by the binding assay and inhibition enzyme-linked immunosorbent assay (ELISA). This is the first report of an antibody against prostaglandin produced by phage display technology and also determination of the DNA sequence of this antibody. The MACS system was shown to be a simpler and more efficient method of panning than the conventional ELISA procedure. According to our results, we concluded that the phage display technique combined with the MACS system allowed the selection of the antibody with high affinity and some specificity.


Subject(s)
Thromboxane B2/analogs & derivatives , Thromboxane B2/chemistry , Thromboxane B2/pharmacology , Amino Acid Sequence , Animals , Antibodies, Monoclonal , Antibody Affinity , Biotin/analogs & derivatives , Biotin/pharmacology , Biotinylation , DNA, Complementary/metabolism , Dose-Response Relationship, Drug , Enzyme-Linked Immunosorbent Assay , Female , Genetic Vectors , Immunoglobulins/chemistry , Immunoglobulins/immunology , Kinetics , Mice , Mice, Inbred BALB C , Molecular Sequence Data , Peptide Library , Plasmids/metabolism , Prostaglandins/chemistry , Prostaglandins/immunology , Sensitivity and Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...